AI School Solutions
EssayMath

Most accurate Triple Integral Calculator
with step-by-step solutions

Math Solver

Paste in screenshots or type the problem below — support PDFs, photos. Upload one question at a time for best results.

What is a triple integral?

A triple integral extends the concept of single and double integrals to three dimensions, summing a function f(x,y,z) over a 3D region V. For regions with circular symmetry in the xy-plane, you can switch to cylindrical (polar + z) or spherical coordinates for a simpler setup.

Triple integral formula

The general form is:

Vf(x,y,z)dV\iiint_V f(x,y,z)\,dV

In rectangular coordinates:

z1z2y1(z)y2(z)x1(y,z)x2(y,z)f(x,y,z)dxdydz\int_{z_1}^{z_2}\int_{y_1(z)}^{y_2(z)}\int_{x_1(y,z)}^{x_2(y,z)} f(x,y,z)\,dx\,dy\,dz

In cylindrical coordinates (x=rcosθx=r\cos\theta,y=rsinθy=r\sin\theta, z=zz=z; Jacobian = rr):

θ=αβr=r1r2z=z1(r,θ)z2(r,θ)f(rcosθ,rsinθ,z)rdzdrdθ\int_{\theta=\alpha}^{\beta}\int_{r=r_1}^{r_2}\int_{z=z_1(r,\theta)}^{z_2(r,\theta)} f(r\cos\theta,r\sin\theta,z)\,r\,dz\,dr\,d\theta

In spherical coordinates (x=ρsinϕcosθx=\rho\sin\phi\cos\theta,y=ρsinϕsinθy=\rho\sin\phi\sin\theta,z=ρcosϕz=\rho\cos\phi; Jacobian = ρ2sinϕ\rho^2\sin\phi):

02π0π0ρ2(ϕ,θ)f(ρsinϕcosθ,ρsinϕsinθ,ρcosϕ)ρ2sinϕdρdϕdθ\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{\rho_2(\phi,\theta)} f(\rho\sin\phi\cos\theta,\rho\sin\phi\sin\theta,\rho\cos\phi)\,\rho^2\sin\phi\,d\rho\,d\phi\,d\theta

How to solve a triple integral step by step

Step 1: Identify f(x,y,z) and the region V; choose rectangular, cylindrical (polar + z), or spherical coordinates.

Step 2: Rewrite dVdV with the correct Jacobian (dxdydzdx\,dy\,dz,rdrdθdzr\,dr\,d\theta\,dz orρ2sinϕdρdϕdθ\rho^2\sin\phi\,d\rho\,d\phi\,d\theta) and set your limits.

Step 3: Integrate the innermost integral first, then proceed outward.

Step 4: Simplify and evaluate to get your final result.

Example: V(x2+y2+z2)dV\iiint_V (x^2 + y^2 + z^2)\,dV over the unit sphere x2+y2+z21x^2 + y^2 + z^2 \le 1

Using spherical coordinates:

x=ρsinϕcosθy=ρsinϕsinθz=ρcosϕdV=ρ2sinϕdρdϕdθV(x2+y2+z2)dV=02π ⁣0π ⁣01ρ2ρ2sinϕdρdϕdθ=02π ⁣0π ⁣01ρ4sinϕdρdϕdθ=4π5 x = \rho\sin\phi\cos\theta \\ y = \rho\sin\phi\sin\theta \\ z = \rho\cos\phi \\ dV = \rho^2\sin\phi\,d\rho\,d\phi\,d\theta \\[6pt] \iiint_V (x^2 + y^2 + z^2)\,dV = \int_{0}^{2\pi}\!\int_{0}^{\pi}\!\int_{0}^{1} \rho^2 \cdot \rho^2\sin\phi \,d\rho\,d\phi\,d\theta \\ = \int_{0}^{2\pi}\!\int_{0}^{\pi}\!\int_{0}^{1} \rho^4\sin\phi \,d\rho\,d\phi\,d\theta = \frac{4\pi}{5}

Tips & Tricks

  • For cylindrical, remember it’s polar (r, θ) plus z with Jacobian r.
  • Use spherical for perfect spheres or cones—don’t forget the ρ² sin φ factor.
  • Sketch the 3D region and its projection onto the xy-plane or φ–θ plane to get accurate limits.

TRY FREE NOW, no sign-up required: Triple Integral Calculator from AI School Solutions gives you accurate & step-by-step solutions!

© 2025ai-school.solutions. All Rights Reserved.

  • Homepage
  • Others
  • Terms of Use
  • Privacy Policy