What is a triple integral?
A triple integral extends the concept of single and double integrals to three dimensions, summing a function f(x,y,z)
over a 3D region V
. For regions with circular symmetry in the xy-plane, you can switch to cylindrical (polar + z) or spherical coordinates for a simpler setup.
Triple integral formula
The general form is:
∭Vf(x,y,z)dV In rectangular coordinates:
∫z1z2∫y1(z)y2(z)∫x1(y,z)x2(y,z)f(x,y,z)dxdydz In cylindrical coordinates (x=rcosθ,y=rsinθ, z=z; Jacobian = r):
∫θ=αβ∫r=r1r2∫z=z1(r,θ)z2(r,θ)f(rcosθ,rsinθ,z)rdzdrdθ In spherical coordinates (x=ρsinϕcosθ,y=ρsinϕsinθ,z=ρcosϕ; Jacobian = ρ2sinϕ):
∫02π∫0π∫0ρ2(ϕ,θ)f(ρsinϕcosθ,ρsinϕsinθ,ρcosϕ)ρ2sinϕdρdϕdθ How to solve a triple integral step by step
Step 1: Identify f(x,y,z)
and the region V
; choose rectangular, cylindrical (polar + z
), or spherical coordinates.
Step 2: Rewrite dV with the correct Jacobian (dxdydz,rdrdθdz orρ2sinϕdρdϕdθ) and set your limits.
Step 3: Integrate the innermost integral first, then proceed outward.
Step 4: Simplify and evaluate to get your final result.
Example: ∭V(x2+y2+z2)dV over the unit sphere x2+y2+z2≤1
Using spherical coordinates:
x=ρsinϕcosθy=ρsinϕsinθz=ρcosϕdV=ρ2sinϕdρdϕdθ∭V(x2+y2+z2)dV=∫02π∫0π∫01ρ2⋅ρ2sinϕdρdϕdθ=∫02π∫0π∫01ρ4sinϕdρdϕdθ=54π Tips & Tricks
- For cylindrical, remember it’s polar (
r, θ
) plus z
with Jacobian r
. - Use spherical for perfect spheres or cones—don’t forget the
ρ² sin φ
factor. - Sketch the 3D region and its projection onto the xy-plane or φ–θ plane to get accurate limits.
TRY FREE NOW, no sign-up required: Triple Integral Calculator from AI School Solutions gives you accurate & step-by-step solutions!